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Fragmentation of fluids by molecular dynamics

S. Toxvaerd
Department of Chemistry, H. C. O” rsted Institute, DK-2100 Copenhagen O” , Denmark

~Received 8 December 1997; revised manuscript received 11 February 1998!

Fragmentation of fluids is obtained by adiabatic expansions of the volume of systems of Lennard-Jones
particles by molecular dynamics simulations. Nontrivial fragmentation is only observed for expansions for
which the systems enter the liquid-gas area of the phase diagram. The fragment distribution is established at an
early time of the expansions and it is exponential. The expansion regime of fragmentation is demonstrated to
depend on the dimension of the system. For a three-dimensional system one only obtains a nontrivial frag-
mentation for expansion rates for which the late time viscous phase separation growth is suppressed.
@S1063-651X~98!01507-4#

PACS number~s!: 64.70.2p, 05.70.Ln, 02.70.Ns, 36.40.Ei
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I. INTRODUCTION

The interest in fragmentation of fluids by expansio
arises from many disciplines in physics and chemistry. T
fragmentation is determined by the distribution of fragmen
P(Ncl) containingNcl mass units. In@1# it is demonstrated
that the distribution of galaxies measured by their lumin
ity, as a measure of the ‘‘big bang’’ fragmentation of matt
seems to be exponential. This result has, however, later b
questioned by the authors of@2#, who suggest that galaxie
should follow a log-normal distribution, as many other fra
ment distributions, obtained in material science. Also
nuclear physics models for fragmentation of fluids play
important role@3#. The present article deals with molecul
dynamics~MD! simulations of a fluid that undergoes a pr
cess of fragmentation. The fragmentation is ensured by
adiabatic expansion of the volume occupied by the fl
whereby the system breaks up into fragments. The comp
tional setup is described in@1#, and is given in the nex
section. This technique is, however, only one of several co
putational techniques by which one can obtain a fragme
tion. Another procedure applied both computer experim
tally @4# as well as in real experiments, is to obtain
fragmentation in a drop of the fluid, e.g., by a local heat
of the system or by releasing the pressure instantaneous
a real experiment by an explosion.

II. ADIABATIC EXPANSIONS OF A FLUID

The MD simulations of adiabatic expansions are p
formed by expanding the volume with a constant velocity
system ofN particles in a box with volumeV0 and periodical
boundaries in all directions are equilibrated to a start te
perature,T0. Then the system is expanded from time,t50,
with a constant velocity,L0ḣ, by expanding the volume in
all directions by

La~ t !5La~0!~11ḣt !, ~1!

whereLa(t) is theath box length@in the present simulation
the volumes were cubic in three dimensions and quadrat
two dimensions, i.e.,L05La(0)5V0

1/D#; ḣ is the expansion
velocity per initial unit length~Hubble constant in cosmo
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logical terms!. In a laboratory experiment one will, e.g
move a piston~in one direction! in a cylinder and the fluid
will respond to this expansion and if the piston is mov
sufficiently slowly and with a constant velocity, the syste
acts as an elastic medium and sets up a linear velocity
file, with a particle mean velocity at the piston that is equ
to its velocity and correspondingly a mean velocity at t
bottom of the cylinder that is zero. In@1# this steady state
velocity profile is also set up att50 in accordance with the
expansion of the volume, by changing all the velocities
stantaneously once at the start of the expansion from th
values,vi(0), to

vi~01 !5vi~0!1ḣr i~0!, ~2!

wherer i(0) is the position of thei th particle att50. This
velocity profile ensures a uniform strain att50 and it is
tested~see Sec. III! that the system in a closed, but expan
ing volume and with no adjustment of the velocities at
50, quickly equilibrates to this expansion setup for sm
strain rates. Calculations show furthermore that this veloc
profile is maintained during the expansion and the setup
the velocity profile thus avoids all initial transients. Final
the periodical boundaries can be taken into account by
suring that a particle that leaves the box in one direct
enters the box from the other side and with a changed ve
ity accordingly to the expansion velocity of the volume, e.
if the particle leaves the box atLa in the ath direction with
a positive velocity,va(t), it enters the box at itsa coordinate
equal to zero with a reduced velocity equal to

va~ t1 !5va~ t !2L̇a~ t ! ~3!

andvisa versa. The last equation ensures a uniformly expa
sion in anopen system.~It was, however, also tested tha
reflecting the particles at the boundaries works equally we!.
The setup ensures an adiabatic and uniform expansion o
open subsystem with a constant expansion velocity,L0ḣ, in
all directions.

One can immediately predict the physics of the system
the two limit values of the strain rate. For a big expansi
velocity and if the particle velocities are not rescaled by E
~2! at the start of the expansion, at the initial temperatureT0
704 © 1998 The American Physical Society
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PRE 58 705FRAGMENTATION OF FLUIDS BY MOLECULAR DYNAMICS
and densityr0, the particles near the piston cannot diffu
fast enough and the expansion tends to an expansion in
vacuum. In the case where the linear~mean! velocity profile
is set up at the start of the expansion the system mus
completely fragmentated into its mass units for big str
rates, and on the other hand both kinds of expansions co
spond to reversible adiabatic expansions for very small st
rates, so in this case the systems’ ‘‘fragmentation’’ is giv
by the systems’ equilibrium structure and all the thermo
namic expressions derived for an equilibrium system can
applied provided we have an expression for the systems
variables~e.g., temperature and pressure!. But in between
these two extremes there might be an interval of strain r
for which a fluid is fragmentated in a nontrivial manner.

In order to determine changes in structure and thermo
namics of the system during the expansion we need exp
sion for the energy, temperature, and pressure during
expansion. The potential energy per particle,upot, is easily
obtained from the instant positions of the particles at timt
as usual, and the local velocities,vi8(t), are determined as in
@1#, by subtracting the velocity component due to the exp
sion

vi8~ t !5vi~ t !2ḣr i~ t !
La~0!

La~ t !
~4!

from which the ‘‘intrinsic’’ temperatureT8(t) in the expand-
ing system is calculated. The intrinsic pressurep8(t) is ob-
tained from the intrinsic temperature and the virial of t
forces at timet, and the thermodynamic energy per partic
u8(t), from T8(t) and upot(t), all by applying standard sta
tistical mechanical formulas. This means that one has a m
sure of when the strain rate is so small that the expan
represents a thermodynamical, reversible path of expan
of the system: Not only must the intrinsic velocitiesvi8(t) be
Maxwell distributed, but the particle distribution must al
be correct as well as the partition between the two distri
tions. This is only ensured if the path of expansion go
through equilibrium points, i.e.,

p8~ t !5p„r~ t !,T8~ t !…, ~5!

wherep„r(t),T8(t)… is the equilibrium pressure in a syste
of particles without any expansion and taken at the temp
ture T5T8(t) and at the densityN/V5r(t). According to
thermodynamics this criterion of a reversible expansion
equally well be determined as rates of expansion sufficie
small to ensure that

u8~ t !5u„r~ t !,T8~ t !…. ~6!

For strain ratesḣ bigger than a certain value~depending on
the actual instant state point! the expansion is still adiabatic
but irreversible in a thermodynamic sense. Still one can
calize a certain barrier of the value ofḣ, which is critical for
the expansion: When the initial speed of expansion per
length ḣ, which introduces local density gradients, excee
the speed by which local density inhomogeneities are
moved, then the system cannot adapt to the expansion,
density gradients are maintained. Although we can
strictly use equilibrium thermodynamic expressions and
a
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lations to determine this critical expansion rate exactly, o
will expect that this happens for rates bigger than or of
order of the speed of an adiabatic sound wave. In the pre
system for values bigger than or of the order

ḣ'A@]p8~0!/]r~0!#S ~7!

the adiabatic expansion means thatLa increases monotoni
cally with the constant velocityL0ḣ. At a later time, how-
ever, the speed of the expansionper unit lengthis

Gex5
1

La~ t !

dLa~ t !

dt
5

ḣ

11ḣt
~8!

which goes to zero ast goes to infinity. The speed of a soun
wave goes to its ideal gas value. So one can see tha
eventual fragmentation of a fluid, created att50 by a super-
sonic expansion, is not necessarily permanent, since
speed of sound, although getting smaller as the density
minishes, remains finite during the expansion, whereas
speed of the expansion per unit length tends to zero. In o
words, a fragmentation, introduced at an early time dur
the expansion can be removed at a later time.~All expan-
sions end at late time in gas points in the phase space
thus all fragments will evaporate; but this process is slow@6#
in three dimensions compared to, e.g., the time it takes
expand from a condensed liquid state to a gas state and
an established fragmentation can exist for a long time.!

The fragmentation of matter is usually characterized
the distribution P(Ncl) of fragments containingNcl mass
units. The fragmentation was obtained in Ref.@1# by calcu-
lating the cluster distributionP(Ncl) at a certain ‘‘late’’ time
where the mean density was sufficiently low to be able
distinguish between free particles and particles bounded
other particles in a cluster. This method, however, has
element of arbitrariness since one has to specify a cer
particle distance,r cl for which a particle belongs to a give
cluster, i.e., if the particle is closer thanr cl to another particle
these two articles are within the same cluster containingNcl
particles. Another criterion for pattern in the particle dist
bution, often used in investigation of, e.g., phase growth
the structure function,S(q), for small wave numberq. This
function has no element of arbitrariness and can be use
any time during the expansion. ButSr(q) gives only a
coarse-grained information of the actual distributionP(Ncl).

The expansion goes through the equilibrium state of
fluid at a sufficiently low expansion rate, and thus a fragm
of Ncl must explore the phase diagram, i.e., if the tempe
ture T8(t) drops belowTc for mean densitiesr(t), which
corresponds to that the system is in the density inter
@r l ,rg# of the corresponding liquid and gas, one will have
competition between fragmentation and phase separa
The domain growth of fluid is rather complicated@5# with
several growth regimes with different growth laws. The fi
regime into which the expanded liquid system enters is
r(t)'r l where ~small! vapor drops are created. Spinod
decomposition and growth are observed for densitiesr'rc
~the critical density!. Spinodal growth of domains is charac
terized by different regimes, with different morphologies a
growth speed. Not much, however, is known about the sp
odal phase separation of liquid and gas, whereas there
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706 PRE 58S. TOXVAERD
been many theoretical as well as experiment investigatio
including computer experimental investigations of the sp
odal decomposition in binary liquid mixtures@7#. Basically,
however, the growth and the growth regimes for these
systems should be the same, governed by the same co
vation laws, which lead to algebraic growth of the doma
with ~mean! diametersR(t):

R~ t !}tn, ~9!

where n depends on the dimension of the space and
functional form of, and terms in the equation for the grow
i.e., the growth depends only indirectly of the particle pote
tial by the location of a growth regime~and eventually the
existence of a growth regime!. For viscous growth in 3D, the
growth exponentn51 andn is smaller than 1 for all othe
domain growths in 3D as well as in 2D. If we can use t
established result of spinodal growth in binary mixtures
the liquid-vapor separation as well, then we can immedia
predict some behavior for fragmentation of fluids in comp
tition with phase growth by spinodal decomposition in t
two phase regime: The only phase growth that can resist
homogeneous expansion with constant expansion velo
L0ḣ of volume sizes is the viscous growth and only in a 3
space. This follows immediately from comparing the spe
of expansionGex with the speed of spinodal growthGgr of
domains, both taken per unit length. The speed of expan
per unit length is given by Eq.~8!, and the speed of an
algebraic domain growth of domains with mean diame
R(t) is

Ggr5
1

R~ t !

dR~ t !

dt
5

n

t
. ~10!

We consider a nontrivial expansion, i.e., with the presenc
phase separation during the~early time of the! expansion.
There is a separation growth for

Gex,Ggr ~11!

but sooner or later the expansion, which asymptotically g
as

Gex<
1

t
, ~12!

will win over all kinds of growth, simply by bringing the
system outside all growth regimes and finally outside
density interval of coexisting phases. But the viscous gro
in 3D differs from all other growth mechanisms by that,if
this growth is present it will always exceed the speed of
expansion. This growth, however, is exactly the obser
spinodal growth at late times in 3D@8#, and so this simple
consideration suggests that there might be a fundamenta
ference between the fragmentation of fluids in 2D and 3D

III. MOLECULAR DYNAMICS SIMULATIONS
OF THE ADIABATIC EXPANSION OF A FLUID

The systems in 2D as well as in 3D all consist ofN
540 000 Lennard-Jones~LJ! particles with a potential inter
action truncated~and shifted! for particle distancesr c
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52.5s. The number of particles must be ‘‘rather big’’ no
only for ensuring good statistics, but also in order to ens
that, e.g., viscous growth can be present during the exp
sion. ~In @8# the viscous regime for phase growth in a bina
3D mixture was observed for growth of domain sizes ove
decade of time and using 343 000 LJ-like 3D particles,
for a gas-liquid system the regime might appear at an ea
time and for smaller domain sizes due to the smaller visc
ity in the gas-liquid system@5#.! The truncation of the poten
tial is also an important detail since the location of the cr
cal temperatureTc is very sensitive to this cutaway o
attractions behindr c . For example, the value ofTc for a 2D
LJ system changes fromTc50.515 toTc50.459 by a cut
~and shift! of the potential forr c52.50s @9# and the poten-
tial used in@1# is for a cut ofr c51.74s whereby the critical
temperature is further lowered; a fact that highly influenc
the interpretation of the observed results in@1# as will be
shown at the end of this section. The gas-liquid phase
grams for a truncated and shifted Lennard-Jones particles
obtained in@9# ~2D! and@10# ~3D!. The MD ~algorithm, etc.!
is performed as described in@11#, with the additional remark
that the time incrementh used in the integration algorithm
must be taken sufficiently small to integrate accurately
high strain rates. In the preceding all data in the article
given in length units ofs, energy units ofe, and time in
units of sAm/e, wheres ande are the potential parameter
in the Lennard-Jones potential andm is the mass of the par
ticles.

The 3D results are presented first. The system was sta
with a givenḣ from an equilibrium point of state at (T0 ,V0),
from which the system was left to itself, as described in
previous section. Thus, the expansion can in principle
performed for two different situations. One where the exp
sion is started from a point of state that corresponds to
system never entering into the region of coexisting~equilib-
rium! liquid and gas phases during the expansion, and
where the systems mean density,r(t), crosses this interval
The results of expansions for which the system does
enter the two-phase part of the phase diagram are first in
tigated.

The investigation of fragmentation is performed for t
adiabatic expansion given by Eqs.~1!–~3!, as original used
by @1# and later used by several others. The crucial com
tational setup is Eq.~2! in which one imposes a linear veloc
ity profile at the start of the expansion. It has, however, ne
been demonstrated that a liquid in a closed volume acts
viscoelastic medium and quickly equilibrates to a linear v
locity distribution when moving the upper walls~piston in a
cylinder! with a constant velocity. Furthermore, one cou
fear that although the fluid does in fact behave as a ela
medium, the fragmentation could be affected be the ini
nonlinear expansion, which most take place from the top
the container. In order to investigate the impact of Eq.~2! on
the expansion and fragmentation we perform some exp
sions at different starting state points and for the system
panded by Eqs.~1!–~3! and compared them with expansion
by moving the upper walls in a closed container with a co
stant velocity. The closed system mimics the expansion o
fluid in a closed volumene by moving a piston. The syst
was, however, expanded in all three directions and the
tem was surrounded by images so the ‘‘piston’’ attracts
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PRE 58 707FRAGMENTATION OF FLUIDS BY MOLECULAR DYNAMICS
fluid at t50 by forces identical to the forces across a pla
in the uniform fluid at the start of the expansion.

Figure 1 gives the velocity distributions and the dens
distributions across the container at the end of the exp
sions. The system was expanded from the state p
(T0 ,r0)5(7.5,0.83), which corresponds to a liquid point
state at a high temperature~for a noble gas fluid atT
'900 K). The system was expanded to a volume with
mean densityr50.2. As can be seen from the figure th
system has in fact set up a linear velocity profile and wit
uniform density, for velocities of the walls up toL0ḣ
50.05, and the velocity profile was established during
early time of the expansion. For small expansion velocit
we observe, as expected, big fluctuations from the linear
file. For expansion velocities bigger thanL0ḣ50.05 we still
observe a linear velocity profile; but the density distributi
is no longer uniform; the viscoelastic medium can no lon
respond sufficiently fast to the expansion and the expan
tends to an expansion into a vacuum.

If the expansion is started at (T0 ,r0)5(5,0.65), at a less
compressed fluid and at at a lower temperature we obs
the same behavior, but only for smaller strain values.~The
two starting state points are chosen so that the system en
the same point of state atrs50.2 for a small expansion

FIG. 1. Local densitiesr(x) ~in units ofs3) and velocitiesv(x)

~in units of the start velocitiesL0ḣ), at the end of the expansion, a
a function of the positionx in the volume~in units of the length of
the box!. ~The mean values are the averages over all three di
tions.! The lower curves show the density distributions. The das

line is for a strain rate ofḣ50.05 and the dash-dotted line is fo

ḣ50.1. Also shown with a straight line is the overall mean dens
r50.2. The points show the relative local velocity together with

straight line for a linear velocity profile.~1! is for ḣ50.1 and

(3) is for ḣ50.005.
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velocity ḣ50.005.! Figure 2 gives the potential energ
upot(t) as a function of expansion time for several expans
velocities starting from (T0 ,r0)5(5,0.65), together with
upot(t) in an open system and with an initial velocity profil
As can be seen from the figure the time evolutions for
open and closed system agree forḣ50.005. Forḣ50.05 the
velocity profile at the end of the expansion is linear, but t
density is no longer uniform as was the case when star
from the more compressed fluid, and the potential energ
different from the energy obtained from the slower expa
sion. The fragment distributions for the open and closed s
tems, respectively, and obtained from the particle positi
at the end of the expansions, show no significant differen

The conclusion drawn from the two sets of expansions
that if the system is expanded sufficiently rapidly the p
ticles cannot diffuse rapidly enough toward the moving w
at the beginning of the expansion and the expansion con
ues as an expansion into a vacuum. We have not investig
and determined the fragment distribution for this case of
pansions. The ‘‘piston’’ velocity barrier for which the vis
coelastic fluid cannot respond and where the expansion
tinues as an expansion into a vacuum is significantly be
the sound velocity. Futhermore it is also below the speed
which a single particle in a uniform fluid diffuses@15#. Mov-
ing a piston requires a coordinated acceleration and diffus
of particles that apparently lower this barrier significant
On the other hand, we notice that for a given expans
velocity it is possible to choose a sufficiently compress

c-
d

y

FIG. 2. Potential energy per particleupot ~in units of e/kB) ob-
tained during the expansions from the particle positions and
different strain rates and as a function of the overall density~in

units of s3): ~1! ḣ50.2; ~2! ḣ50.05; ~3! ḣ50.005;~4! ḣ50.005.
~1!, ~2!, and~4! are for a closed system without an initial veloci
profile. ~3! is for an open system and with a initial velocity profi
given by Eq.~2!.



h
an

pe
s

e
re

s
a
s

u
ai
ig

tio
tia

7
tio
or
oc
s

s

n
-
ri-
ns

x-
ag-
uc-
.
ed,
it

of
on,
at
for
pre-

he

ex-

pan-

iple
t of
tes

n

r

.

-

en-

708 PRE 58S. TOXVAERD
fluid ~point of state! at the start of the expansion for whic
the linear profile is set up during the early time of the exp
sion.

The rest of the expansions are performed for an o
system given by Eqs.~1!–~3!. The first set of expansions i
from the point of state (T0 ,r0)5(5,0.65) for which the sys-
tem expands tors50.2 without entering the two-phas
liquid-gas area. At that density all the intrinsic temperatu
T8 are higher or of the order 1.3~depending onḣ). ~The
critical temperature isTc51.085). The intrinsic pressure
during the expansion for various strengths of strain rates
shown in Fig. 3. The pressures are obtained as function
expansion times, but compared at equal densitiesr(t). As
can be seen from the figure the different functions accum
late into two groups; one that accumulates for small str
rates, and another that accumulates into a limit curve for h
strain rates. This behavior is in agreement with the predic
given in the previous section. The square root of the ini
slope of the curve for the slow isentropic expansions is
and according to the considerations in the previous sec
one will expect that the system is only ‘‘fragmentated’’ f
strain rates above, or of the order of, the initial sound vel
ity, whereas the system should be able to adapt the expan
of the space for rates below this value.~For expansions in
closed systems these supersonic and uniform expansion
not possible.!

Figure 4 confirms this result. It shows theP(Ncl) distri-
butions for r50.2 obtained as described in@1# and in the
previous section~with r cl 51.3, the functional form of the

FIG. 3. Intrinsic pressurep8 ~in units ofes23) as a function of
the densityr(t) ~in units of s3) during the adiabatic expansio
from r(0)50.65 tor(t)50.20. The inset showsp8 in details in the
expansion~density! interval @0.38;0.31#. The various curves are fo

different expansions ratesḣ: ~1! ḣ520, ~2!ḣ510, ~3! ḣ55, ~4!

ḣ50.5, ~5! ḣ50.2; ~6!-~8! ḣ50.05; 0.01 and 0.005, respectively
-

n

s

re
of

-
n
h
n
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,
n
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are

distribution was not sensitive to the value ofr cl). Also shown
in the figure is the corresponding ‘‘fragment distribution’’ i
an equilibrium system at (T,r)5(1.3,0.2) and the uncer
tainty intervals are from ten independent equilibrium dist
butions. As can be seen from the figure the distributio
nicely confirm the prediction. Only for supersonic initial e
pansion rates does the fluid fragment, and in very small fr
ments, whereas the system maintains its equilibrium str
ture ~and intrinsic pressure! for smaller strain rates. But Fig
4 also shows that the measure of fragment distribution us
P(Ncl), at the present point of state is misleading, since
indicates that a diluted equilibrium fluid should consist
fragments. It is of course not the case. The distributi
P(Ncl), only expresses the open fluid structure of a fluid
moderate density. The fragment distributions obtained
the corresponding expansions, but in a closed volumen
sented at the beginning of this section~see Figs. 1 and 2!
agree nicely with the corresponding distributions for t
open system, as expected.

In the second set of experiments the 3D system was
panded from at a point of state, (T0 ,r0)5(1,0.65) and with
a initial velocity profile~2!, from which it enters into the two
phase region immediately after the expansion and the ex
sion was continued until a mean density ofr50.025'rg .
At that time, and for a strain rate ofḣ50.2 the temperature
was decreased to 0.60, which, however, is above the tr
point temperature for the system so the fragments consis
liquid droplets. The expansions were obtained for strain ra

FIG. 4. DistributionP(Ncl) of ‘‘clusters’’ of Ncl particles in a
fluid at the densityr50.2. The curve with the full line and uncer

tainty intervals gives the distribution in a fluid at equilibrium (ḣ
50) where the uncertainty intervals are obtained from ten indep
dent equilibrium configurations. The five other curves are for~1!

ḣ520, ~2! ḣ510, ~3! ḣ55, ~4! ḣ51, and~5! ḣ50.005.
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PRE 58 709FRAGMENTATION OF FLUIDS BY MOLECULAR DYNAMICS
in the intervalḣP@0.001,20#, and the calculations confirm
the prediction that the system fragmented completely
very fast expansions. For very slow expansions, however
system separates into a two-phase system of one liquid p
and one gas phase; but in between these two trivial lim
there is a big interval of strain rates for which the fluid w
fragmented. A series of observations demonstrate this
Figure 5 shows the potential energyupot„r(t)… during the
expansions and the inset gives the variations at the begin
of the expansions. The potential energies fluctuate with~ex-
pansion! times for small strain rates as in an equilibriu
system, but their mean values agree and indicate that
system is expanded thermodynamically in a reversible m
ner. The potential energies also agree for different but v
fast expansions and over almost the whole density reg
but in between these limits there is a big interval of str
rates for which the system ended in widely different poten
energies. This is due to differences in the fragmentat
From the inset it can be seen that the variations inupot„r(t)…
at very early times, and for the intermediate strain valueḣ
50.2 and 0.1, exhibit a looplike form, which indicates th
the onset of fragmentation starts at very early times as
found by @3# ~for a 2D system!.

The strain rateḣ50.2 was chosen for special investig
tion since it is in between the two extreme values of exp
sion rate, and with a fragment distribution with a maximu
cluster of the order a few hundred particles, which ensu
the best statistics. For an expansion in a closed system
without setting up the linear velocity profile, the system m

FIG. 5. Potential energy per particleupot ~in units of e/kB) ob-
tained during the expansions from the particle positions and

different strain rates:~1! ḣ50.001,~2! ḣ50.01, ~3! ḣ50.1, ~4! ḣ

50.2, ~5! ḣ51; ~6! ḣ510 ~dots!, and~7! ḣ520. The inset shows
upot(t) at the start of the expansion forr(t)P@0.65,0.61#.
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be compressed to a much higher density thanr5 0.65 at the
start of the expansion in order that the fluid can establish
profile before entering the two phase area. The dynamic
fragmentation can be investigated by obtaining the struc
function, S(q), during the expansion. Figure 6 showsS(q)
for various times~mean densities! during the expansion and
for a strain rate ofḣ50.2. The structure function forq val-
ues smaller thanp gives a coarse-grained indication of th
dynamics of fragmentation and the distribution ofe frag-
ments. As can be seen from the figure the fragmenta
certainly appears at an early time of the expansion, as
would expect. One can also see from the location of
maximum of the peak, which has not shifted very much
ward smallerq values during late time of the expansion, th
the mean size of the fragments only increases a little du
the last part of the expansion. One would expect that
created clusters grow, at least for sizes bigger than the c
cal droplet size for droplets in the nucleation region, b
from S(q) @and the first moment ofS(q)# it was estimated
that the growth of the clusters was suppressed by the ex
sion. This fact is, however, much more clearly seen from
fragment distributionP(Ncl), obtained during the late stag
of the expansion. At the diluted densities (r50.05 and
0.025! the clusters are found to be well separated~so the
distributions do not depend on the choice ofr cl , which was
set to 1.5s). Figure 7 gives the distribution of fragments fo
ḣ50.2. The full line and uncertainty intervals are the me
of ten independent expansions fromT0 ,r0 configurations to

r
FIG. 6. The structure functionS(q) for q less thanp. The

functions are obtained from positions at various times during

expansion withḣ50.2. The lower curve is the S~k! for the starting
positions atT51.2 andr50.65 and the six succeeding curves a
obtained during the expansion at the densitiesr(t)
50.38, 0.24, 0.16, 0.11, 0.05, and 0.025, respectively.
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the mean densityr50.025 and it gives the accumulated clu
ter distribution. The biggest cluster observed in the ten
pansions consists of 377 particles; and the logarithmic
demonstrates that a bimodal exponential distribution~dots!
describes the distribution within the accuracy of the d
over several decades ofP(Ncl).

Also shown in the figure~dashed line! is the distribution
at the densityr50.05 of one~representative! of the ten sys-
tems expanded, from which it is clearly seen that the dis
bution is not changed at late times. The inset, which a
shows the gaslike distribution~dot-dashed line! for big ex-
pansion rates, demonstrates, however, that the bimodal
tribution does not describe the distribution of small drop
perfectly.

The droplets get bigger for smaller strain rates thanḣ
50.2, and the domain structure of the fluid, for a strain r
of ḣ'0.01, looks like the structures obtained by spino
decompositions of binary mixtures where both phases ex
through the whole volume. As pointed out in the previo
section, if in 3D one gets to a structure during the expans
that contains viscous growth, then this growth will remain
the system until the system is brought outside this gro
domain. Furthermore, the domains percolate the volume
spinodal decompositions in binary mixtures atr'rcr . Since

FIG. 7. Cluster distributions in a 3D fluid. The full line an

uncertainty intervals is for the fluid expanded withḣ50.2 to a
mean density ofr50.025 and the uncertainties are obtained fro
10 expansions with different~equilibrium! start configurations. The
bimodal distribution is shown by dots and the dashed curve is
distribution of one~representative! of the ten expansions, but take
at the intermediate densityr50.05. The inset shows the distribu
tions up to cluster size 30, and the two curves~dashed-dotted line!

also shown in the inset are the distributions obtained for aḣ55 and

the gas distribution forḣ50.001.
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the expanded system necessarily must cross this density
during the expansion one willa priori expect the same to
happen in this system. For example, for sufficiently sm
strain rates, one will expect the system to break up into s
phases of gas and liquid, which both percolate the volum
all directions ~‘‘plummer’s nightmare’’!. With this fact in
mind it is possible to be more precise about the statemen
when the expansion brought the system outside the regio
viscous growth: It happens when the system of the liqu
which percolates the volume in all three directions, brea
up. To test this hypothesis, the system was expanded w
very small strain rate ofḣ50.001 and one observed exact
the behavior described above. Figures 8 and 9 show the
jections of the positions at the time where they just no lon
percolate the volume~Fig. 8! and the particle distribution a
the end of the expansion atr50.025 ~Fig. 9!, where the
system has ended in one big liquid drop of 29 272 partic
surrounded by 10 728 gas particles with a gas distribut
shown in the inset of Fig. 7. Since it has not been the aim
the present investigation to determine spinodal phase gro
in a quenched liquid-gas system the expansions at s
strain rates have only been used to estimate the limit st
for that a fragmentation is maintained. The limit value
strain which gives a fragmentation is the strain rates
which the fluid, by passing the spinodal growth regime d
ing the expansion, does not percolate the volume.

Finally a system of 40 000 LJ particles, but in 2D, w
expanded and in the first set of expansions through o
phase fluid points in the phase diagram down to a densit
r50.2 and temperatureT50.55 above the critical tempera
ture @9#, Tcr50.459 for the corresponding equilibrium sy
tem. The ‘‘cluster distribution’’ at the end of the expansio
for a density ofr50.2 is given in Fig. 10. As can be see

e

FIG. 8. Projection of the particle distribution (xi ,zi) in a 3D
fluid, the two other 2D projections are similar. The particle dist

bution is obtained for a very slow expansion rate ofḣ50.001 and
the figure shows the distribution at the mean densityr50.05 at the
time where the liquid stops percolating the 3D space.



t
ob
.

in
to-
oes
ed
,

d
tial
ce
er

e
tial
t

st
gy

y

he
tial

is

as
the
nd

ion,

on
dal
n-
ates
is-
han

er-
on-

stic

d
ur

PRE 58 711FRAGMENTATION OF FLUIDS BY MOLECULAR DYNAMICS
from the figure the distributions are bimodal, as observed
@1#. But so is the equilibrium ‘‘cluster distribution’’ in a 2D
system at the same temperature and density, and from
figure one can see that the bimodal distribution, also
tained by@1#, is isomorphic with the equilibrium structure

FIG. 9. Projection of the particle distribution (xi ,zi) for the
same system as shown in Fig. 8; but at the densityr50.025.

FIG. 10. Cumulative distribution ofP(Ncl) for a 2D LJ system
at r50.2. With the full line is the mean of the distribution obtaine
from five different equilibrium distributions at the same temperat

and density. The other distributions are for~1! ḣ50.2, ~2! ḣ50.1,

~3! ḣ50.05, ~4! ḣ50.025,~5! ḣ50.01, and~6! ḣ50.005.
in

he
-

Thus the distribution functionP(Ncl) gives a misleading pic-
ture of the structure in moderate dense fluids atr'0.2 both
in 2D as well as in 3D~Fig. 4!. The 2D result differs, how-
ever, from the corresponding 3D result, shown in Fig. 4,
that the nonequilibrium structures converge more slowly
ward the equilibrium distribution as the expansion rate g
to zero. The ‘‘fragmentations,’’ shown in Fig. 10, measur
by their difference from the equilibrium distribution are
however, not stable but disappear~slowly! as the expansions
are continued.

The potential in@1# was, as mentioned above cut atr c
51.74~but not truncated@12#! so the phase diagram referre
to in @1# is irrelevant and the phase diagram for the poten
used in@1# is not known. In order to estimate the importan
of the different cut we calculated the potential energy p
particle in the fluid state (T,r)5(0.60,0.65), used later.

The potential energy is

upot5
1

2E0

`

drg~r !rruLJ~r !, ~13!

whereg(r ) is the radial distribution function, and this is th
relevant quantity to consider, when cutting away poten
energy. In the present computation the potential is cut ar c
52.5s and shifted byuLJ(r c). In @1# the potential is spline
fitted to go to zero in the intervalr P@1.24,1.74# whereby a
particle almost only interacts with its five to six neare
neighbors, but with a full LJ potential. The potential ener
for a LJ system without any cut and at (T,r)5(0.60,0.65)
was calculated to beupot521.947 and the potential energ
for a truncated (r c52.5) and shifted potential was21.797
and it is this reduction of the binding energy that lowers t
critical temperature by about 10%. The spline fitted poten
used in@1# gives a potential energy,upot521.619; at that
point of state and from the figure caption to Fig. 5 in@1# one
can see that their temperature atr50.175 isT50.39 and
their expansionscannotbe within the two-phase area. This
the reason for the ramified ‘‘clusters’’ obtained in@1#, which
in fact is isomorphic with the~supercritical! equilibrium
structure in the 2D fluid.

The 2D system was finally expanded through liquid-g
points of state in order to investigate the hypothesis that
fragmentation at an adiabatic expansion differs in 2D a
3D. The system was started at (T,r)5(0.60,0.65) and it
entered the two-phase region shortly after the expans
which was continued until a densityr50.026'rg . Figure
11 gives the particle distribution for a very slow expansi
rate of ḣ50.001, and it demonstrates that the spino
growth @13,14# has not been able to compete with the expa
sion to the same degree as in 3D. For faster expansion r
~thanḣ50.001) the system ends in stable, exponentially d
tributed fragmentated states, but with smaller fragments t
for a corresponding 3D expansion.

IV. CONCLUSION

Computer simulations of expansions of fluids can be p
formed in many ways. If the system is expanded with a c
stant velocity~well below the speed of sound! from a com-
pressed state, then the fluid acts quickly as a viscoela

e
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medium and sets up a linear velocity profile in the contai
and the fluid expands uniformly. This kind of uniform e
pansion is investigated by molecular dynamics simulatio
The computer experiments demonstrate that the equilibr
phase behavior plays a crucial role for a stable fragmenta
of the fluid. The fragmentation at state points above the tw
phase region~Fig. 4!, is only obtained for very fast expan
sion rates and disappears~slowly! as the expansions are co
tinued. This is explained by the fact that a consta
expansion rate of the sizes implies that the speed of the
pansion per unit length goes to zero whereas the capabilit
removing a density inhomogeneity is given by the sou
velocity, which remains finite. Thus a fragmentation that
obtained at an early time of the expansion, e.g., by an ex
sion, disappears at a later time.

FIG. 11. Particle distribution in a 2D system at (T,r)

5(0.3,0.026) after a very slow expansion rate ofḣ50.001.
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The adiabatic expansion is associated with a strong
crease in temperature and the fragmentation competes
phase growth, including spinodal phase growth, if the sys
enters into the liquid gas area of the phase diagram. A th
dimensional system differs significantly from a correspon
ing two-dimensional system in several ways. In 3D the t
phases can percolate the volume in all directions at the s
time ~‘‘plummer’s nightmare’’! whereas a phase percolatio
in 2D is a frontier and obstacle for the other phase. Furth
more the spinodal phase growth has a smaller exponen
the algebraic growth speed in 2D than in 3D, where
viscous growth is the only growth that can compete with
expansion. This growth is, however, the observed spino
growth in 3D at late time@8#, and the very slow expansion
in 2D and 3D confirm this difference~Figs. 8, 9, and 11!. For
a slow expansion the system separates into a big dro
liquid surrounded by its gas; whereas there is an interva
bigger expansion rates for which the system is fragmenta
when leaving the two-phase area. The fragment sizes
exponentiallydistributed.

The fragmentation by a uniform expansion of a~2D!
Lennard-Jones fluid was in@1# compared with the luminosity
of galaxies as a measure of the big bang fragmentation
matter. According to@1# this is also exponentially distrib
uted; but later this result was questioned since if matter in
Universe is fractally distributed one should in fact expect
algebraic distribution@16# rather than an exponential distr
bution. The fragments in the present LJ system, without lo
range gravitational forces, are exponentially distributed a
different from the droplet distribution for growth outside th
spinodal percolating regime@17#. The mean of ten expan
sions, which gives the uncertainty of the distribution, clea
shows an exponential distribution over several decades~Fig.
7!; but it is of course a question whether there exists t
kind of universality between fragmentation of obstacles w
widely different forces. Perhaps one important result fro
the present investigation might be helpful in this context: o
observes that the distribution of fragments is establishe
an rather early times during the expansion, as demonstr
in Fig. 7, and thus the distribution of matter in the Univer
should be independent of the age of the galaxies.
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